## An operator approach to highcontrast homogenization

Yi Sheng Lim 05/07/2022



#### Problem Setup

 $-\operatorname{div}(a(\cdot/\varepsilon)\nabla\cdot)$  " $\longrightarrow$ "  $-\operatorname{div}(a_{\text{hom}}\nabla\cdot)$ ?

• Fix dimension  $d \ge 2$ . Consider the problem

$$-\operatorname{div}(\operatorname{a}(\frac{x}{\varepsilon})\nabla u^{\varepsilon}) - \mu u^{\varepsilon} = f, \qquad f \in L^{2}(\mathbb{R}^{d}), \qquad \mu \in \mathbb{C}$$

• a(x) is  $\mathbb{Z}^d$ -periodic, and looks like this:



#### Problem Setup

• Fix dimension  $d \ge 2$ . Consider the problem

$$-\operatorname{div}\left(\operatorname{a}\left(\frac{x}{\varepsilon}\right)\nabla u^{\varepsilon}\right) - \mu u^{\varepsilon} = f,$$

• a(x) is  $\mathbb{Z}^d$ -periodic, and looks like this:



- **Operator POV**
- Resolvent eqn  $A_{\varepsilon}u^{\varepsilon} - \mu u^{\varepsilon} = f$
- $\sigma(A_{\varepsilon}) \to \sigma(A_{\text{hom}})$



#### Methods available (non-HC)

(Murat 1978, Tartar 1979) Method of compensated compactness

$$U^{\varepsilon} \to U^0, V^{\varepsilon} \to V^0 \text{ in } (L^2(\Omega)^d)$$

 $\operatorname{div} U^{\varepsilon} \to f^0 \in H^{-1}$  and  $\operatorname{curl} V^{\varepsilon} = \boldsymbol{o}$ 

Then  $U^{\varepsilon} \cdot V^{\varepsilon} \rightharpoonup U^{0} \cdot V^{0}$ .

(Allaire 1992) Two-scale convergence method: We say  $v^{\varepsilon} \xrightarrow{2} v^{0}$  if

$$\int_{\Omega} v^{\varepsilon}(x)\psi(x,\frac{x}{\varepsilon})dx \to \iint_{\Omega \times [0,1]} v^{0}(x,y)\psi(x,y)dydx$$

For all  $\psi(x,y) \in \mathcal{D}(\Omega; C_{per}^{\infty}([0,1]))$ .

Tartar's method of oscillating test functions (1977)

Γ-convergence,G-convergence,H-convergence,

Two-scale expansion method

$$u^{\varepsilon}(x) = u_0(x, \frac{x}{\varepsilon}) + \varepsilon u_1(x, \frac{x}{\varepsilon}) + \varepsilon^2 u_2(x, \frac{x}{\varepsilon}) + \cdots$$

(Birman-Suslina 2004) "spectral germ"

Gelfand transform

$$A \cong \int_{[0,1]^d}^{\bigoplus} A(\tau) d\tau$$

Perturbation theory

$$A(t)\varphi_n(t) = \lambda_n(t)\varphi_n(t), \qquad \tau = t\theta$$

Norm-resolvent approximations!!!



#### Why norm-resolvent convergence?

- Let  $A_n$  and A be (unbounded) self-adjoint ops on a Hilbert space  $\mathcal{H}$ .
- We say that  $A_n$  converges to A in the norm-resolvent sense, denoted  $A_n \stackrel{\text{nr}}{\to} A$ , if

$$\|(A_n-\lambda)^{-1}-(A-\lambda)^{-1}\|_{op}\to 0$$
, as  $n\to\infty$ , for some  $\lambda\in\mathbb{C}\setminus\mathbb{R}$ .

- Implies strong convergence of solutions  $u^n = A_n^{-1} f \to A_0^{-1} f = u^0$ .
- (By functional calculus)  $||g(A_n) g(A)||_{op} \to 0$ ,  $g \in C_0(\mathbb{R}; \mathbb{C})$
- $A_n \stackrel{\text{nr}}{\to} A$  implies convergence of spectrum (in some sense), i.e.

#### What it *cannot* achieve

- Spectral decomposition
- Might not have limits in general ... norm resolvent asymptotics

• 
$$A_n \stackrel{\text{iif}}{\to} A$$
 implies convergence of spectrum (in some sens 
$$\sigma\left(\operatorname{nr} - \lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} \sigma(A_n)$$
 
$$\sigma\left(\operatorname{sr} - \lim_{n \to \infty} A_n\right) \subseteq \lim_{n \to \infty} \sigma(A_n)$$





#### Step 1

• From  $A_{\varepsilon}u^{\varepsilon} - \mu u^{\varepsilon} = f$ , we apply a sequence of unitary transforms:

$$A_{\varepsilon} = G_{\varepsilon}^* \left( \int_{\varepsilon^{-1}Q'}^{\oplus} \Phi_{\varepsilon}^* A_{\varepsilon}^{(\varepsilon\theta)} \Phi_{\varepsilon} d\theta \right) G_{\varepsilon}$$



Gelfand Transform

$$G_{\varepsilon}: L^{2}(\mathbb{R}^{d}) \to L^{2}(\varepsilon^{-1}Q \times \varepsilon Q)$$

(gives us a family of PDEs on  $L^2(\varepsilon Q)$ )

Unitary rescaling

$$\Phi_{\varepsilon} : L^2(\varepsilon Q) \to L^2(Q)$$



#### Step 1

• Write  $\tau = \varepsilon \theta \in Q' = [-\pi, \pi)^d$ . The resolvent equation

$$\left(A_{\varepsilon}^{(\tau)} - z\right)u = f \in L^2(Q)$$

has a unique solution  $u\equiv u_{\varepsilon}^{( au)}=u_{\mathrm{soft}}+u_{\mathrm{stiff}}$  whenever the following BVP can be

solved uniquely in the weak sense:

$$\begin{cases} \varepsilon^{-2} \left(\frac{1}{i}\nabla + \tau\right)^2 u_{\text{stiff}} - z u_{\text{stiff}} = f, & \text{in } Q_{\text{stiff}}, \\ \left(\frac{1}{i}\nabla + \tau\right)^2 u_{\text{soft}} - z u_{\text{soft}} = f, & \text{in } Q_{\text{soft}}, \\ u_{\text{stiff}} = u_{\text{soft}}, & \text{on } \Gamma, \end{cases} \\ \varepsilon^{-2} \left[ \frac{\partial u_{\text{stiff}}}{\partial n} + i(\tau \cdot n) u_{\text{stiff}} \right] + \left[ \frac{\partial u_{\text{soft}}}{\partial n} + i(\tau \cdot n) u_{\text{soft}} \right] = 0, & \text{on } \Gamma, \\ u_{\text{stiff}} \text{ periodic} & \text{on } \partial Q \end{cases}$$

Unit cube  $Q = [0,1)^d$ 



## Our goal

- Find an operator  $A_{\varepsilon,hom}^{(\tau)}$  that is
  - self-adjoint on a possibly smaller subspace  $L^2(Q_{\text{soft}}) \oplus \widetilde{\mathcal{H}}$  of  $L^2(Q)$ .
  - Dependence on  $\varepsilon$  only allowed in the action of  $A_{\varepsilon,hom}^{(\tau)}$  on the stiff component. (e.g. domain  $\mathcal{D}\left(A_{\mathrm{hom}}^{(\tau)}\right)$  cannot depend on  $\varepsilon$ .)
  - Is  $O(\varepsilon^2)$  close to  $A_{\varepsilon}^{(\tau)}$  in the norm-resolvent sense.  $O(\varepsilon^2)$ -error does not depend on  $\tau$ .
- $A_{\varepsilon.hom}^{(\tau)}$  need not be unique since we are discussing asymptotics.



## Result (as a picture)





#### Result

#### Theorem (Cherednichenko, Ershova, Kiselev 2020)

The operator  $A_{\varepsilon,\text{hom}}^{(\tau)}$  defined by

$$\mathcal{D}\left(A_{\varepsilon,\text{hom}}^{(\tau)}\right) \coloneqq \{(u,\hat{u}) \in L^{2}(Q_{\text{soft}}) \oplus \text{span}\left\{\Pi^{\text{stiff},(\tau)}\psi_{1}^{\text{stiff},(\tau)}\right\}:$$

$$u \in \mathcal{D}\left(A_{0}^{\text{soft},(\tau)}\right) \dotplus \text{span}\left\{\Pi^{\text{soft},(\tau)}\psi_{1}^{\text{stiff},(\tau)}\right\}, \quad \hat{u} = \Pi^{\text{stiff},(\tau)}\Gamma_{0}^{\text{soft},(\tau)}u\}$$

$$A_{\varepsilon,\text{hom}}^{(\tau)} {u \choose \widehat{u}} = \begin{pmatrix} -(\nabla + i\tau)^2 u \\ -(\widecheck{\Pi}^{\text{stiff},(\tau)*})^{-1} \mathcal{P}^{(\tau)} \left[ \partial_n^{(\tau)} u |_{\Gamma} + \varepsilon^{-2} \mu_1^{\text{stiff},(\tau)} u |_{\Gamma} \right] \end{pmatrix}$$

is self-adjoint on  $L^2(Q_{\text{soft}}) \oplus \text{span}\left\{\Pi^{\text{stiff},(\tau)}\psi_1^{\text{stiff},(\tau)}\right\}$ , and is  $O(\varepsilon^2)$  close to  $A_{\varepsilon}^{(\tau)}$  in the norm-resolvent sense.

This estimate is uniform in  $\tau \in Q'$  and  $z \in K_{\sigma}$  (a compact set  $\sigma > 0$  distance away from the real line.)



#### Boundary triples

A (Ryzhov) boundary triple  $(A_0, \Lambda, \Pi)$  needs:

- Separable Hilbert spaces  $\mathcal H$  and  $\mathcal E$ .
- (Dirichlet operator)  $A_0$  an unbounded SA op on  $\mathcal{H}$ , with  $0 \in \rho(A_0)$ .
- (DTN operator)  $\Lambda$  an unbounded SA op on  $\mathcal{E}$ .
- (Lift)  $\Pi: \mathcal{E} \to \mathcal{H}$ , a bounded injective linear map.
- $\mathcal{D}(A_0) \cap \operatorname{ran}(\Pi) = \{0\}$

This gives us meaning to  $(\hat{A}_{\beta_0,\beta_1}-z)u=f\in\mathcal{H}$ , or equivalently  $\begin{cases} (\hat{A}-z)u=f\\ (\beta_0\Gamma_0+\beta_1\Gamma_1)u=0 \end{cases}$ 

with a nice formula on the resolvents:

$$R_{\beta_0,\beta_1}(z) = (A_0 - z)^{-1} - S(z) \left(\overline{\beta_0 + \beta_1 M(z)}\right)^{-1} \beta_1 S(\bar{z})^*$$



Approx  $\Lambda = \sum \mu_k \langle \cdot, \psi_k \rangle \psi_k$  by  $\mu_1 \langle \cdot, \psi_1 \rangle \psi_1$ 



# O Thank you!